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Learning in a sensory cortical
microstimulation task is associated with
elevated representational stability

Ravi Pancholi1, Lauren Ryan 1 & Simon Peron 1

Sensory cortical representations canbehighly dynamic, raising thequestionof
how representational stability impacts learning. We train mice to discriminate
the number of photostimulation pulses delivered to opsin-expressing pyr-
amidal neurons in layer 2/3 of primary vibrissal somatosensory cortex. We
simultaneously track evoked neural activity across learning using volumetric
two-photon calcium imaging. In well-trained animals, trial-to-trial fluctuations
in the amount of photostimulus-evoked activity predicted animal choice.
Population activity levels declined rapidly across training, with themost active
neurons showing the largest declines in responsiveness.Mice learned at varied
rates, with some failing to learn the task in the time provided. The photo-
responsive population showed greater instability both within and across
behavioral sessions among animals that failed to learn. Animals that failed to
learn also exhibited a faster deterioration in stimulus decoding. Thus, greater
stability in the stimulus response is associated with learning in a sensory cor-
tical microstimulation task.

Cortical activity can be highly dynamic, even in the context of identical
sensory input. In olfactory1, visual2–5, somatosensory6,7, auditory8,
multimodal9, andmotor cortical areas10,11, aswell as hippocampus12, the
population of neurons representing a particular sensory or motor
feature changes over time. This turnover in the stimulus-responsive
population is known as representational drift13,14. Because variance in
neural activity within sensory cortices can disrupt readout in down-
stream areas, representational drift is viewed as a potential constraint
on stable perception and behavior15. At the same time, its ubiquity in
both neocortex and allocortex suggests that it is a fundamental cor-
tical feature.

Representational stability is typically studied in animals receiving
input at the sensory epithelium. Under such conditions, dynamics in
the sensory stream prior to cortex can contribute to variability in the
cortical response. Moreover, fanout at pre-cortical processing stages
distributes information across multiple cortical and subcortical tar-
gets, reducing the relative perceptual importance of the cortical area
under study16. Microstimulation of cortex circumvents pre-cortical
processing and simplifies interpretation of behavioral effects by
explicitly requiring the animal to use specific features of the evoked

activity. Microstimulation has been used extensively in the study
of perception17–23, and animals can be trained to report
microstimulation24–27. However, electrical microstimulation of cortex
evokes activity among a sparse and spatially distributed population28,
suffers from instability due to slowly emerging gliosis29, and produces
a prominent stimulus artifact that complicates simultaneous
recording30. Optical microstimulation of cortex23,26,27,31–33 overcomes
these constraints: opsin expression can be stable for the duration of
the experiment, viral opsin delivery allows for refined spatial and
genetic control of evoked activity, and optical microstimulation is
compatible with chronic concurrent recording via large-scale calcium
imaging33,34. Consequently, optical microstimulation of cortex in con-
junction with population imaging is well suited to the study of repre-
sentational stability and its impact on behavior.

Here, we train mice to report the intensity of optical micro-
stimulation in a subset of opsin-expressing pyramidal neurons in layer
(L) 2/3 of primary vibrissal somatosensory cortex (vS1). Mice must
discriminate between a high and low number of optical micro-
stimulation pulses delivered to vS1. Over the course of training, we
track neural dynamics in the opsin-expressing tissue using volumetric
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two-photon calcium imaging34. Photostimulus-evoked activity declines
rapidly over the course of learning, especially among the most
responsive neurons. Photostimulus-evoked activity also predicts ani-
mal choice inwell-trainedmice.Miceexhibit different rates of learning.
Throughout learning, evoked activity in the photoresponsive popula-
tion changes at rates that vary across animals. Animals with more
stable neural activity, both within and across behavioral sessions, are
more likely to learn the task. These animals exhibit a slower decline in
the efficacy of stimulus decoding using neural activity. Together, our
results show that mice that learn the task exhibit greater stability of
evoked activity in sensory cortex.

Results
Mice can learn an optical microstimulation pulse count
discrimination task
We monitored cortical dynamics as mice were trained on an optical
microstimulation task. Transgenic mice expressing GCaMP6s35 in

cortical excitatory neurons (Slc17a7-Cre X Ai162)36 were virally trans-
fected with the soma-restricted opsin ChRmine (AAV-8-CaMKIIa-
ChRmine-mScarlet-Kv2.1-WPRE)37, resulting in opsin expression in
pyramidal neurons in L2/3 of vS1. To allow for optical access, a cranial
window was implanted over vS1 (Fig. 1a). Following recovery, we used
widefield imaging during whisker deflection to confirm that opsin
expression was restricted to vS1 (typically the C row of whiskers;
Supplementary Fig. 1). A miniature light-emitting diode (LED) was
affixed to the cranial window adjacent to the site of opsin expression
for optogenetic stimulation.

Light pulses (5ms long; minimum inter-pulse onset interval,
50ms) were delivered to the opsin-expressing area and animals were
required to report whether the pulse count was high or low. Micewere
rewarded for licking the left of two lickports on low pulse count trials
(1 or 3 pulses; 0 pulses in early training) and the right lickport on high
pulse count trials (7 or 9 pulses), with 5 pulse count trials rewarded
randomly between left and right (Fig. 1b). On each trial, photostimulus
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Fig. 1 | Mice learn to discriminate photostimulus pulse count using evoked vS1
activity. aOpsin expression in barrel cortex. Left, widefield view of cranial window
showing viral injection sites and LED; center, two-photon image of cranial window
(green, GCaMP6s fluorescence; red, mScarlet fluorescence); right, higher magnifi-
cation two-photon image. b Mice must lick the right (red) lickport following pre-
sentation of 7 or 9 LED pulses or the left (blue) lickport following presentation of 0,
1, or 3 pulses to obtain reward. 5 pulses are randomly rewarded. A spectrally mat-
ched masking flash LED was used throughout. c Task timing during a single trial
(Methods). d Example photostimulation pulse timing permutations. e Performance
during learning. Top, pulse count progression; bottom, task performance as a
function of training day for one animal, with each dot indicating the rolling average

of 61 trials centered on the shown trial (Black, days where peak d-prime ≥ 1.5; grey,
d-prime < 1.5). f Task performance as a function of training day for individual ani-
mals. Colored, animals expressing opsin that learned the task; black, animals
expressing opsin that failed to learn the task; grey, animals with no opsin. g Right
lick probability as a function of pulse count in final version of the task. Grey,
individual animals; black, mean ± standard error of the mean (s.e.m.), n = 6 mice.
h Lesion of opsin-expressing tissue. Left, coronal section following laser lesion
(box, lesion extent; green, GCaMP6s fluorescence); right, task performance before
and after lesion. Grey, average performance over 3 sessions pre- and post-lesion for
individual animals; black: mean ± s.e.m. *P <0.05 for paired two-sided
t-test (P =0.014).
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pulses were presented during the stimulus epoch (500ms). This was
followed by a short delay period (500ms), after which mice indicated
their response by licking during the response epoch (<2 s) (Fig. 1c). LED
output was stable within and across training sessions (Supplementary
Fig. 2). Increasing the pulse count, the pulse amplitude, or the inter-
pulse interval all resulted in greater photostimulation-evoked activity
in awake animals not performing a task31 (Supplementary Fig. 3). Sti-
mulus pulses were randomly permuted among 9 time bins to prevent
animals from solving the task using timing cues (Fig. 1d, Supplemen-
tary Fig. 4). A spectrallymatched LEDwas placednear themouse’s eyes
and illuminated during each time bin to obscure potential visual cues
from photostimulation (‘masking flash’, Fig. 1b).

Mice (Supplementary Table 1) were first trained on a photo-
stimulation detection task (9 vs. 0 pulses; Fig. 1e). Mice were clas-
sified as ‘learners’ (n = 6) if their performance met our learning
criterion (at least two consecutive dayswith a peak d-prime of 1.5 in a
61 trial window; Methods) within the first 2 weeks of training. Mice
that failed to improve on this detection task were classified as ‘non-
learners’ (n = 5). These mice were only exposed to the 9-pulse vs.
0-pulse stage of the task and were removed from the training cohort
within 1-2 weeks. Learners reached criterion performance in
9.8 ± 3.7 days (mean ± SD), after which additional pulse counts were
added until mice were proficient at the full intensity discrimination
task (Fig. 1f, g). Learning was marked by increased performance on
both trial types, with decrements in performance on task stage
transitions observed only in some animals (Supplementary Fig. 5;
Fig. 1e). Learners achieved high performance on the final stage of the
task (78.3% ± 3.4% correct).

To confirm that animals required opsin expression to perform the
task, we trained a separate cohort of mice not infected with opsin (‘no
opsin’; Fig. 1f). These mice could not learn the task after 20 training
sessions (performance on final day: 48.6% ± 1.4% correct; n = 5 mice).
Lesioning the opsin-expressing area inmice that hadprogressed to the
final task degraded performance (average performance of 3 sessions
before lesion: 78.8% correct, 3 sessions after lesion: 60.9%, P = 0.014,
paired two-sided t-test; Fig. 1h), with performance sometimes
remaining above chance because the lesions did not remove all opsin-
expressing neurons (Supplementary Fig. 6). Thus, mice can learn to
discriminate the number of photostimulus pulses delivered to a subset
of neurons in L2/3 of vS1 via optical microstimulation.

Optical microstimulation response increases with pulse count
To assess neural activity during opticalmicrostimulation, we recorded
from L2/3 of the opsin-expressing area using volumetric two-photon
calcium imaging6,34. Neurons distributed among three 800-by-800 μm
planes spaced 60 μm apart were tracked for 29.8 ± 6.9 days (mean ±
SD; n = 6 mice; Fig. 2a). Imaged neurons were separated into opsin-
expressing (692.6 ± 123.2 neurons per mouse) and opsin non-
expressing (2287.3 ± 466.9 neurons per mouse) populations based
on the presence of a co-expressed fluorophore, mScarlet (Methods).
Based on estimates of L2/3 pyramidal neuron density in vS16,38, we
imaged 15–20% of infected L2/3 neurons, for a total of ~3500 to ~4500
opsin-expressing neurons per mouse. In well-trained mice performing
the final stage of the task (Fig. 1e, f), neurons exhibited diverse
responses to photostimulation (Fig. 2b, c). We found both opsin-
expressing and opsin non-expressing excitatory neurons that respon-
ded to photostimulation, with photoresponsive neurons showing
stronger responses with greater pulse counts (Fig. 2d). Opsin non-
expressing neurons were presumably driven by opsin-expressing
neurons in a feedforward manner (Fig. 2b). Photoresponsive neurons
were broadly spatially distributed (Fig. 2e). Higher photostimulus
pulse count consistently increased the fraction of neurons responsive
to stimulation (Fig. 2f), as well as the response amplitude (Fig. 2g) and
response probability (Fig. 2h) of individual neurons. This was true for
both opsin-expressing and opsin non-expressing neurons. In all cases,

the opsin-expressing population respondedmore reliably and strongly
to photostimulation than the opsin non-expressing population.

The amount of microstimulation-evoked activity predicts
animal choice
Higher microstimulation pulse counts drive larger responses in pho-
toresponsive neurons. Thus, mice could solve the task by licking in one
direction if activity fell below a threshold and licking in the other if
activity exceeded a threshold. Ifmice employed this strategy, variability
in evoked activity for a given pulse count should influence choice.
Specifically, for a given pulse count, trials where the animal reported
more stimulation (by licking right) should show more evoked activity
than trials where the animal reported less stimulation (by licking left). In
well-trainedmice performing the final stage of the task, we found that a
subset of individual neurons indeed showed this pattern across all pulse
counts, whereas other neurons exhibited a difference on only a subset
of pulse counts or no difference at all (Fig. 3a, b).

Sensorydecisions are believed to result frompooling acrossmany
neurons39,40. Therefore, we next asked whether the predicted differ-
ence in evoked activity was also present at the scale of the photo-
responsive population rather than just among individual neurons.
Among strongly photoresponsive opsin-expressing neurons (response
probability > 0.25) during an example session, we found that themean
evoked ΔF/F across trials was no different for left and right lick trials
(Fig. 3c). Among strongly photoresponsive opsin non-expressing
neurons, however, the population response was higher on trials
where the animal indicated a stronger stimulus for all pulse counts.
Across mice, the peak-normalized response on lick-left and lick-right
trials did not differ across pulse counts for opsin-expressing neurons
(Fig. 3d, e; P =0.060, two-sided t-test comparing right and left lick
trials, n = 6 mice). For opsin non-expressing neurons, the difference
was significant at all pulse counts (P =0.017), with greater levels of
evoked activity on trials where the animal reported higher activity.
Thus, the amount of evoked activity in a subset of opsin non-
expressing neurons downstream from the opsin-expressing popula-
tion can predict animal choice.

Activity levels decline over time, but overall activity is not
predictive of learning
Having observed a link between neural activity and choice in well-
trained animals performing our task, we next examined the evolution
of cortical activity as mice became proficient at the task. Sensory
cortical representations in L2/3 exhibit diverse dynamics during
learning, with changes in aggregate responsiveness as well as in the
responses of single neurons41. We first asked whether aggregate
responsiveness changed across training (Fig. 4a, b). Restricting our
analysis to trials with 9 photostimulus pulses, whichwere present in all
sessions, we identified both opsin-expressing and opsin non-
expressing neurons with stable, increasing, or decreasing responses
to photostimulation (Fig. 4c–e). Aggregate responsiveness did not
change significantly in either the opsin-expressing or opsin non-
expressing population, though neurons with the highest responsive-
ness across sessions (neurons with an overall responsiveness in excess
of the top 5% or 1% observed across all sessions; Methods) did show
declines in responsiveness (Fig. 4f). Despite this decline in respon-
siveness, high pulse counts evoked more activity among both opsin-
expressing and opsin non-expressing neurons than lowpulse counts at
all stages of training (Supplementary Fig. 7). Thus, training results in a
sparsification of the photostimulation response, primarily due to
declining responses among the most responsive neurons.

To control for changes in responsiveness due to changes in opsin
expression, we tracked mScarlet fluorescence (‘redness’) over the
course of training in mice that learned the task (Supplementary Fig. 8;
Methods). We found that overall redness across all neurons did not
change over time (P = 0.490, paired two-sided t-test, n = 6 mice;
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Supplementary Fig. 8b). Relative redness was also stable across days
(Supplementary Fig. 8c, d).

To determine whether opsin expression was impacting cellular
health or response properties, we tracked whisker movements
(‘whisking’) in mice that learned the task (n = 6) and assessed whether
whisking responsive neurons in the imaged population were impacted
by opsin expression (Supplementary Fig. 9a, b). The fraction of
whisking responsive neurons and their encoding scores were com-
parable between the opsin-expressing and opsin non-expressing
populations (Supplementary Fig. 9c–e). Moreover, the fraction of
whisking cells and their encoding scores remained stable over the
course of training for both populations. We also examined activity
during the inter-trial epoch (‘spontaneous’ activity; Methods), and
found no difference between opsin-expressing and opsin non-
expressing neurons over the course of training (Supplementary

Fig. 9f, g). Thus, observed changes in neural responsiveness are unli-
kely to be due to changes in opsin expression or physiological changes
restricted to opsin-expressing neurons.

Stronger optical microstimulation is more detectable26,27, so we
next asked whether the amplitude of the evoked response early in
training was greater among animals that learned the task. Specifically,
we looked for differences in evoked responses between mice that
learned (n = 6 mice, Supplementary Table 1) and those that did not
learn (n = 5 mice) either early in training (days 1-3) or at the end of the
time common to both learners and non-learners (late in training, days
6-8). We found that opsin-expressing neurons showed comparable
response amplitudes between learners and non-learners early (lear-
ners: 0.63 ± 0.24, non-learners: 0.87 ± 0.27; P =0.151, two-sided t-test
comparing learners and non-learners) and late (learners: 0.35 ± 0.18,
non-learners: 0.35 ± 0.25;P =0 .991) in training (Fig. 4g). Therewas also

Fig. 2 | Photostimulation response increaseswithpulse count. aVolumetric two-
photon imaging. Left, three planes (800-by-800 μm, 60 μm inter-plane distance)
imaged simultaneously at 7 Hz; right, example plane with example opsin-
expressing (magenta) and opsin non-expressing (green) neurons.
b Photostimulation-evoked ΔF/F traces for 4 neurons across 10 consecutive trials.
Vertical bars indicate stimulation epochs. Trial outcome indicates whether the
animal made a correct (check) or incorrect (cross) behavioral response. Inset,
proposed flow of activity from opsin-expressing to opsin non-expressing neurons.
c ΔF/F traces for the 4 neurons in b showing mean response to each pulse count
over a single session. Grey, individual trials; color,mean. dResponse amplitudes (z-
scored ΔF/F) of all opsin-expressing and opsin non-expressing neurons from one

animal sorted by responses to the 9 pulse stimulus. e Spatial map of neural
responses from one imaging plane. Size of dot indicates either response amplitude
(top) or response probability (bottom) to 1, 5, or 9 stimulus pulses. f Fraction of
neurons responsive to stimulation as a function of pulse count. Left, example
animal (n = 624 opsin-expressing neurons, n = 2640 opsin non-expressing neurons;
box plot denotes quartiles, whiskers denote 1st and 99th percentiles, horizontal line
denotes median); right, all animals (small dot, median across all full intensity dis-
crimination task sessions; large dot, grandmean; error bars, s.e.m.). g Same as f for
response amplitude as a function of pulse count. h Same as f for response prob-
ability as a function of pulse count.
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nodifference in responseprobability either early (learners: 0.17 ± 0.04,
non-learners: 0.20 ±0.05; P =0.242) or late (learners: 0.11 ± 0.05, non-
learners: 0.11 ± 0.06; P =0.798) in training. Similarly, opsin non-
expressing neurons showed no difference in response amplitude
between learners and non-learners early (learners: 0.15 ± 0.11;
non-learners: 0.08 ± 0.03;P = 0.227) or late (learners: 0.09 ±0.07; non-
learners: 0.04 ± 0.01; P =0.144) in training (Fig. 4h). Response prob-
ability also did not differ early (learners: 0.05 ±0.04; non-learners:
0.03 ± 0.01; P =0.320) or late (0.04 ±0.03; non-learners: 0.03 ± 0.00;
P =0.218) in training. Thus, activity declined in both learners and non-
learners and evoked activity was comparable across both cohorts.

Learners show greater photoresponsive population stability
Even though aggregate responsiveness was similar between learners
and non-learners across training, individual neurons may show

variation in their evoked activity that distinguishes learners from non-
learners. Response variability within cortical neurons been observed in
many cortical areas13 and is thought to influence perception and
learning15.Within a single training session, weobservedneuronswhose
responses were stable across the session and others whose responses
increased or decreased (Fig. 5a). At the population level, we computed
the evoked ΔF/F (Methods) for individual 9-pulse trials (Fig. 5b) and
obtained a vector of values (one per neuron) for a given trial. To
quantify stability, we computed the correlation between evoked ΔF/F
vectors across trial pairs (Fig. 5c). Periods of elevated trial-to-trial
correlation were interspersed with periods of lower correlation,
though the population response could be stable over many
trials (Fig. 5d).

We next asked if representational stability differed among lear-
ners and non-learners. To obtain an overall measure of stability for a
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given session, we computed the mean trial-to-trial correlation of
response vectors for a given session in allmice, restricting our analysis
to 9-pulse trials. Among opsin-expressing neurons, there was no dif-
ference in the mean trial-to-trial correlation across the training days
common to all mice (days 1-8) between learners and non-learners
(Fig. 5e; learners: 0.58 ±0.05, n = 6 mice; non-learners: 0.58± 0.11,
n = 5; P =0.865, two-sided t-test). Among opsin non-expressing neu-
rons, however, learners had higher mean trial-to-trial correlation
than non-learners (learners: 0.47 ± 0.02, n = 6 mice; non-learners:
0.34 ±0.03, n = 5; P =0.032). Thus, among opsin non-expressing neu-
rons, within-session photostimulus response variability is higher
among non-learners.

We next examined representational stability across sessions.
For each session, we generated a vector with the mean evoked ΔF/F
across 9-pulse trials for each neuron. We then compared days by

computing the correlation between one day’s vector and analogous
vectors obtained for subsequent days. For sessions farther apart in
time, correlations between these vectors declined (Fig. 6a, b).
Aggregated across animals, the opsin-expressing population
showed a decline in the rate of turnover over the course of training,
whereas opsin non-expressing neurons exhibited steady drift
(Fig. 6c). To quantify this, we measured the number of days it took
for R2 between two population vectors to fall below 0.5. In learners,
this increased from 3.9 ± 0.3 days in early training (days 1-3) to
6.2 ± 1.2 days in middle training (days 8-10) for opsin-expressing
neurons (Fig. 6d; P = 0.035, two-sided t-test, n = 6 mice), but
remained unchanged among opsin non-expressing neurons (early:
4.6 ± 0.2 days; late: 5.4 ± 0.8 days; P = 0.163, two-sided t-test). Thus,
inter-day response stability increased for opsin-expressing neurons
as training progressed.
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To determine whether inter-day response stability differed
between learners and non-learners, we compared the two using the
days for which we had data across all mice (days 1-8). Correlations
between single day population response vectors were high for both
learners and non-learners among opsin-expressing neurons but were
lower for non-learners among opsin non-expressing neurons (Fig. 6e).
We measured the mean number of days until R2 between two popu-
lation vectors fell below 0.5. For days with only a few subsequent
training sessions common to both learners and non-learners (i.e., day
6), this condition was often never met. Therefore, we restricted our
analysis to the days for which all animals yielded a value for this metric
(days 1-3). We found no difference among learners and non-learners
for opsin-expressing neurons (Fig. 6f; days until R2 < 0.5, learners:
3.9 ± 0.3, n = 6 mice; non-learners: 3.8 ± 0.7 days, n = 5; p = 0.759, two-
sided t-test). For opsin non-expressing neurons, however, R2 remained
above 0.5 longer for learners (4.6 ± 0.1 days, n = 6 mice) than for non-
leaners (2.4 ± 0.3 days, n = 5; p =0.048, two-sided t-test). Thus, mice
that fail to learn the task exhibit higher levels of both intra- and inter-
day response stability among opsin non-expressing neurons.

Stimulus decoding degrades more rapidly in mice that fail to
learn the task
Representational stability is thought to impact downstream decoding
of sensory cortical activity15. This suggests that the ability to decode
the stimulus from neural activity may be different among learners and
non-learners. We therefore compared decoding between learners and
non-learners over the course of training. We evaluated decodability
using receiver operating characteristic (ROC) analysis, discriminating
between evoked ΔF/F on high (7, 9) and low (0, 1, and 3) pulse count
trials. We quantified decoding efficacy by computing the area under
the ROC curve (AUC; Methods) for each neuron on a given session.
Stimulus decoding declined over the course of training in individual
mice (Fig. 7a). Though transitions to more difficult task variants
reduced decodability, decoding declined even between these transi-
tions. In learners, the AUC among the top 5% of neurons by decoding
ability on a givenday (Methods) declined from0.84 ±0.02 (days 1-3) to
0.70 ±0.01 (days 20-22) among opsin-expressing neurons (Fig. 7b;
P =0.004, n = 6 mice, two-sided t-test; comparing days 1-3 vs. days

20-22). Simultaneously, the fraction of opsin-expressing neurons with
an AUC>0.75 declined from 0.12 ± 0.02 to 0.02 ±0.01 (Fig. 7c;
P =0.003). Smaller declines were observed among opsin non-
expressing neurons, with the AUC among the top 5% of neurons
dropping from 0.69 ±0.02 to 0.61 ± 0.01 (P = 0.044, days 1-3 vs. days
20-22) and the fraction of neurons with AUC>0.75 declining from
0.02 ± 0.02 to 0.01 ± 0.00 (P =0.006). Thus, in mice that learned the
task, stimulus decoding slowly declines over the course of training,
despite steady or even improving performance.

We next asked whether decoder performance differed among
learners and non-learners. We examined decoding on the first and last
three common days (days 1-3 and 6-8, respectively). Initially (days 1-3),
decoding among the top 5% of opsin-expressing neurons was higher
for non-learners than learners (Fig. 7d; learners: 0.84 ± 0.02, n = 6; non-
learners: 0.91 ± 0.01, n = 5; P =0.006, two-sided t-test comparing lear-
ners with non-learners), with no difference among opsin non-
expressing neurons (learners: 0.69 ±0.02; non-learners: 0.65 ± 0.02,
P =0.422). The fraction of neurons with AUC>0.75 was also compar-
able among learners and non-learners for both opsin-expressing
(Fig. 7e; learners: 0.12 ± 0.02, n = 6; non-learners: 0.15 ± 0.04, n = 5;
P =0.414) and opsin non-expressing neurons (learners: 0.02 ± 0.02,
n = 6; non-learners: 0.01 ± 0.00, n = 5; P =0.148). For the last three
commondays (days 6-8), however, decoding for the top 5%of neurons
was no longer significantly different among opsin-expressing neurons
(learners: 0.82 ± 0.02; non-learners: 0.75 ± 0.07, P =0.168), but became
so among opsin non-expressing neurons, with non-learners exhibiting
worse decoding performance (learners: 0.66 ±0.01; non-learners:
0.59 ±0.02, P =0.028). Similarly, the fraction of neurons with AUC>
0.75 was comparable among opsin-expressing neurons in learners vs.
non-learners (learners: 0.07 ±0.0, n = 6; non-learners: 0.04 ±0.05,
n = 5; P = 0.266), but was lower among opsin non-expressing neurons
(learners: 0.02 ± 0.00, n = 6; non-learners: 0.00 ± 0.00, n = 5;
P =0.027). Thus, stimulus decoding performance declines more
rapidly in non-learners than learners.

Discussion
We tracked neural activity in vS1 asmice learned to perform an optical
microstimulation pulse count discrimination task (Fig. 1). Evoked
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activity in this task was proportional to the number of photostimula-
tion pulses delivered (Fig. 2). Individual mice learned at different rates,
with some mice failing to learn the task in the time provided. Among
well-trained mice in the final task stage, evoked activity was predictive
of animal choice, though only among opsin non-expressing neurons
indirectly driven by photostimulation (Fig. 3). Over the course of
training, evoked activity among the photoresponsive population
declined (Fig. 4). Throughout training, the photoresponsive popula-
tion exhibited a steady rate of neural turnover. Animals that exhibited
more stable neural responses among opsin non-expressing neurons,
both within and across sessions, were more likely to learn than those
with less stable responses (Figs. 5, 6). Lower response stability coin-
cided with greater declines in stimulus decoding, and mice that failed
to learn exhibited poorer stimulus decoding in later training (Fig. 7).

Lower response stability and degradation in stimulus decoding
were only predictive of learning amongopsin non-expressing neurons.
Thus, the activity directly evoked in cortex by photostimulation did
not account for the rate of learning. However, the efficacy with which
that activity drove consistent responses in downstream neural popu-
lations did impact perception13–15. Photostimulation produced more
consistent responses among the directly stimulated population, as
demonstrated by the higher correlations among the population
response for opsin-expressing neurons both within and across ses-
sions relative to opsin non-expressing neurons (Figs. 5e, 6f). Factors
that could contribute to varied recruitment of downstream neurons
include top-down modulation42,43 as well as variable excitatory recur-
rence in downstream populations33,37,44–46. Our work suggests that the
efficacy with which the stimulated population can propagate its
activity to downstream neurons predicts learning ability.

Representational instability has been observed in many sensory1–8

and motor10,11,47,48 cortices, as well as hippocampus12,49–51. Under some
conditions, however, sensory cortical52–54, motor cortical55–57, and
hippocampal58 representations canbe stable for extendedperiods at the
single neuron level. Factors that contribute to greater response stability
include extended periods of task training6,41,59, task engagement49,50,60,
and artificial versus naturalistic stimuli3. We observe representational
instability in the context of direct cortical stimulation, even in highly
trained animals engaged in the task. This supports the view that such
instability is an intrinsic feature of cortex, though it is does not rule out
the possibility that other structures contribute to the observed
instability42.

We observe a large degree of sparsification in the photo-
responsive population over the course of the first week of training,
both in terms of the size of the responsive population and the typical
response for a given neuron.With novel natural stimuli, both increases
and decreases in responsive populations have been observed. For
example, novel, behaviorally-relevant tones become overrepresented
across learning in auditory cortex61,62, whereaswhisker representations
can shrink following environmental enrichment in vS163. Direct sti-
mulation of cortex or of cultured cortical neurons can drive both
increases23,64–66 and reductions67,68 in responsiveness. Candidate
mechanisms for declining responsiveness include increased inhibitory
input onto pyramidal neurons69, reduced excitability70,71, and reduc-
tions in excitatory connectivity67. Reduced excitability is a less likely
mechanism in our experiment, given the lack of change in whisking
responses and stability of spontaneous activity (Supplementary Fig. 9),
which should both be impacted if global excitability changed. Given
that the most active neurons experience disproportionately larger
response declines, sparsification is unlikely to be due to global
mechanisms, such as a general increase in inhibition. Instead, cell-
specific changes likely account for the observed dynamics, such as
targeted changes in inhibition.

Microstimulation has been used extensively in the study of
perception17,18, yet tracking the dynamics of microstimulation-evoked
activity over learning has proven difficult. Chronic electrical

microstimulation poses numerous challenges: it is invasive, can inad-
vertently activate neurons up tomillimeters away from the stimulation
site28, and can cause tissue degradation at the site of electrode
insertion29. Furthermore, simultaneous recording is complicated by a
prominent stimulation artifact30, and even studies with concurrent
recording rarely examine the activity evoked at the stimulation site72–75

(but see ref. 76) Finally, electrical microstimulation cannot target
genetically separable neural populations. Optical microstimulation
overcomes these issues. Photostimulation using an external LED does
not require an intracortical implant, the stimulation is spatially and
genetically confined, and calcium imaging allows us to observe evoked
responses in thousands of neurons at single cell resolution33,34. In
contrast to objective-based optogenetic illumination, our LED-based
approach also allows the objective to move while maintaining con-
sistent stimulation at the target site. This allows for imaging atmultiple
depths and other brain areas and permits training away from the
microscope.

We show that over the course of optical microstimulation task
training, evoked activity in the stimulated region of vS1 exhibits
instability both within and across sessions. We find that greater sta-
bility in optogenetically evoked activity is observed among mice that
successfully learn to use evoked activity to perform a task. Thus,
learning is associated with more stable sensory cortical
representations.

Methods
Animals and surgery
Adult Ai162 (JAX 031562) X Slc17a7-Cre (JAX 023527)36 mice (15 male, 1
female; Table S1) were used throughout. Thesemice express GCaMP6s
exclusively in cortical excitatory neurons in a tetracycline
transactivator-dependent manner. To suppress expression during
development, breeders were fed a diet that included doxycycline
(625mg/kg doxycycline; Teklad). Mice received doxycycline until
weaning. All animal procedures were in compliance with protocols
approved by New York University’s University Animal Welfare
Committee.

Mice (6-10 weeks old) were anesthetized with isoflurane during
viral injections, surgical implantation, and LED placement (3% induc-
tion, 1.5% maintenance). A titanium headbar was attached to the skull
with cyanoacrylate (Vetbond). A circular craniotomy (3.5mm dia-
meter) was made in the left hemisphere over vS1 (center: 3.3mm lat-
eral, 1.7mm posterior from bregma) using a dental drill (Midwest
Tradition, FG 1/4 drill bit).

Following the craniotomy, virus encoding the soma-localized
opsin ChRmine and the red fluorophore mScarlet (AAV-8-CaMKIIa-
ChRmine-mScarlet-Kv2.1-WPRE, 2.48 × 10¹³ vg/mL, diluted 1:500 in
1X PBS; generously provided by Dr. Karl Deisseroth) was injected
into vS1. A glass capillary (Wiretrol II, Drummond) was pulled using a
micropipette puller (P-97, Sutter Instrument) and the tip beveled to
25° with a tip diameter of 25 μm. The pipette was back-filled with
mineral oil (M5904, Sigma-Aldrich) and 2 μL of viral solution was
drawn into the tip. Three 100 nL injections weremade 300 μmbelow
the dura and spaced 400 μm apart in a triangle centered on the
typical anatomical location of the C2 barrel. For each injection, the
pipette was lowered into the brain at a rate of 300 μm/min, followed
by a 1-minute pause after which virus was injected at a rate of 20 nL/
min using a hydraulic micromanipulator (Narishige MO-10). Fol-
lowing a 2minute pause, the pipette was withdrawn at a rate of
300 μm/min with an additional 1 minute pause at a depth of 150 μm
below the dura. Finally, the dura was removed using a pair of fine
forceps (Fine Science Tools) and a double-layer cranial window
(4.5mm external diameter, 3.5 mm inner diameter; #1.5 coverslip;
adhered with Norland 61 UV glue) was placed over the craniotomy.
The cranial window and headbar were affixed to the skull with dental
acrylic (Orthojet, Lang Dental).
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Following surgical recovery, mice were trimmed to whiskers C1-3
and placed on water restriction, with regular trimming thereafter. To
confirm that the area of opsin-expression fell within vS1, the locationof
the barrels corresponding to the C1-3 whiskers was identified by
measuring touch-evokedGCaMP6sΔF/F at coarse resolutionduring an
imaging session during which the mouse was awake but not per-
forming any task (4X objective; 3 × 3mm field of view; Supplementary
Fig. 1a–c).

LED placement was performed 2-4 weeks after injection. LEDs
(590 nm, LXZ1-PL01, Lumileds) were connected to the LED driver by
soldering 3 cm of polyurethane enameled copper wire (34 AWG) to
each pad of the LED. A 2-pin, flat flex cable connector (Digikey) was
then soldered to the free ends of the copper wire and secured with
epoxy (Devcon). Towaterproof the LED, a thin layer of clear nail polish
(Sally Hansen) was applied to all surfaces of the LED. LEDs were then
affixed to the animals’ cranial windows. Following anesthesia, a small
arc (60°) of dental cement was drilled away on the anterior-medial
edge of the craniotomy to expose the edge of the cranial window.
Cyanoacrylate was applied to the drilled area to ensure that the cra-
niotomy remained sealed. The LED was placed at a 30° angle on the
edge of the cranial window with the most lateral edge of the LED 0.5-
1mm away from the center of the opsin-expressing area (Supple-
mentary Fig. 1). Themedial edge of the LED and the copper wires were
secured to the dental cement and the LED connector secured to the
posterior edge of the headbar using cyanoacrylate. Waterproofingwas
confirmedbyplacingwater on the cranialwindowandensuring that no
current passed between the water and the LED.

Light propagation model
The LED was modeled as an 8 × 8 grid of point sources positioned in
water above the cranial window (Supplementary Fig. 1e). A light ray
from each point source thus passed through the following: water,
interface between water and window glass, glass, interface between
glass and brain, and brain tissue. At each interface, Fresnel equations
were used to calculate the fractional transmission of light. Within the
brain, scattering of light was accounted for using empirical
measurements77. The power density at different depths within the
brain was computed by scaling the max power at the LED face (mea-
sured using a photodiode) by the fractional intensity, fractional
transmission at each interface, and fraction of light remaining after
scattering. This quantity was divided by the surface area of a half-
sphere to yield the predicted power density at a given location in the
brain. Light radiation from each point source was treated indepen-
dently and averaged to compute the final predicted power density.

Photostimulation system
Optogenetic stimulus delivery was controlled by a LabJack T7, with
commands originating from a MATLAB user interface on a separate
computer. The stimulation and masking flash LEDs were controlled
using LED drivers (T-cube, ThorLabs) whose output currents were
controlled by the LabJack. The signal to the stimulation LED was ter-
minated using a 4-pin flat flex cable connector (Digikey) that was
mated to the LED connector on the animal during behavior. The
masking flash consisted of 3 LEDs (595 nm, XPEBAM-L1-0000-00A01,
Cree LED) that were spectrally matched to the stimulation LED and
placed near the animal’s face to illuminate the eyes.

Behavior
Micewere trainedon anoptogenetic pulse countdiscrimination task in
which the number of light pulses from the stimulation LED was asso-
ciatedwith awater reward fromoneof two lickports (Fig. 1b). Each trial
consisted of three epochs: stimulus (500ms), delay (500ms), and
response (<2 s) (Fig. 1c). During the stimulus epoch, between 0 and 9
light pulses (5ms, 20Hz) were presented from the stimulation LED.
Pulses were randomly distributed among 9 time bins (5ms, 20Hz) to

prevent the animal from using timing cues to solve the task (Fig. 1d,
Supplementary Fig. 4). Masking flash pulses (15ms, 20Hz, starting
5ms prior to the optogenetic stimulus pulse and ending 5ms after)
were presented at each timebin on all trials to prevent the animal from
using visual cues to solve the task. The PMT shutterswere closed 50ms
before the start of the first photostimulus time bin and opened 50ms
after the end of the last bin (total closure time: 505ms). Thus, the
masking flash provided a visual cue for the onset of the stimulus
epoch, whereas the shutter provided an auditory cue. Following the
stimulus epoch, there was a 500ms delay after which an auditory cue
(3 kHz, 50ms) signaled the beginning of the response epoch. At this
point,mice could indicate their decision by licking oneof two lickports
spaced 3mm apart along the medial-lateral axis. The lickports were
moved into reach during the response epoch by electrical motors.
Well-trained mice withheld licking until the lickport came into reach.
Correct responses were rewarded with 3-7μL of water which the ani-
mal could collect for 1-2 s. Incorrect responses were punished with
immediatewithdrawalof the lickport and a timeout. After the response
epoch, there was a 7 s inter-trial interval.

Training proceeded in a standard sequence. Following LED pla-
cement, water-restricted mice were handled and head-fixed to habi-
tuate animals to the behavioral apparatus. Animals were first trained
on a photostimulus detection task in which 9 stimulation pulses pre-
dicted reward from the right lickport and 0 pulses predicted reward
from the left lickport (Fig. 1b, e).Micewere evaluatedusing a sliding 61-
trial window over which both percent correct (Fig. 1e) and d-prime
were calculated. For each session, a peak d-prime across these sliding
windows was computed. Mice that had attained at least two sessions
with a peak d-prime of 1.5 and continued to have peak d-prime greater
than 1.5 by the 8th session were considered learners; mice that had not
yet attained such performance, or had regressed despite two con-
secutive days of meeting criteria, were considered non-learners. As
mice attained our performance criterion (peak d-prime over a 61 trial
windowexceeding 1.5) formore than2 consecutive sessions for a given
stage, the task progressed as follows: 0 pulses (left) vs. 9 pulses (right);
1 pulse (left) vs. 9 pulses (right); 1 and 3 pulses (left) vs. 7 and 9 pulses
(right); 1, 3, and 5 pulses (left) vs. 5, 7, and 9 pulses (right). 5 pulse trials
were randomly and equally rewarded between left and right. To
maintain high performance on the final task and reduce bias, we
modified the probability of presentation of each pulse count such that
1 and 9 pulse trials occurred up to 8x more frequently than inter-
mediate pulse counts.

The behavioral task was controlled by a BPod state machine
(Sanworks) and customMATLAB software. The auditory response tone
was controlled by a low-latency audio board (Bela). Lickport motion
was controlled by a set of 3 motorized actuators (Zaber) and an
Arduino. Lickswere sensedusing a customelectrical detection circuit78

(Janelia).

Whisker videography and whisking representation analysis
Whisker video was acquired using custom MATLAB (MathWorks)
software from a CMOS camera (Ace-Python 500, Basler) running at
400Hz and 640× 352 pixels and using a telecentric lens (TitanTL,
Edmund Optics). Illumination was provided by a pulsed 940nm LED
(SL162, Advanced Illumination). 7 s of each trialwere recorded, starting
500ms prior to shutter closure and including both the microstimula-
tion and response periods. Data was processed on NYU’s High Per-
formance Computing (HPC) cluster. First, candidate whiskers were
detected using the Janelia Whisker Tracker79. Next, whisker identity
was refined and assessed across a single session using customMATLAB
software6,45. Following whisker assignment, the angle (θ) for one
whisker (typically C2) was calculated, with protraction yielding more
positive θ values, by convention.

Whisking classification was performed using a per-neuron gen-
eralized linear model (GLM) that predicted ΔF/F from the whisker

Article https://doi.org/10.1038/s41467-023-39542-x

Nature Communications |         (2023) 14:3860 10



angle, θ6,45,80. The whisking model fit excluded the ~2.5 s starting 1 s
prior to shutter closure and ending 1 s following shutter closure,
thereby excluding any photostimulation-related whisker movements.
An encoding score was assigned to each neuron by computing the
Pearson correlation between the model-predicted ΔF/F and actual
ΔF/F. Neurons for which this value exceeded 0.15 were assigned to the
touch and/or whisking representations. Whisking scores were com-
puted for each day of imaging.

Two-photon microscopy
Calcium imaging was performed using a custom two-photon
microscope (http://openwiki.janelia.org/wiki/display/shareddesigns/
MIMMS). The microscope consisted of a 940nm laser (Chameleon
Ultra 2, Coherent), a Pockels cell (350-80-02, Conoptics), two galva-
nometric scanners (6SD11268, Cambridge Technology), a resonant
scanner (6SC08KA040-02Y, Cambridge Technology), a 16x objective
(N16XLWD-PF, Nikon), an emission filter for green fluorescence (FF01-
510/84-30, Semrock), an emission filter for red fluorescence (FF01-
650/60, Semrock), and two GaAsP PMTs (H10770PB-40, Hamamatsu).
Each PMT had an associated shutter (VS14S1T1, Vincent Associates)
that was controlled by a voltage signal from the LabJack.

Imaging data was acquired using Scanimage (Vidrio Technolo-
gies). Three 800-by-800 μm imaging planes axially spaced 60 μm
apart were acquired at a rate of ~7Hz. The objective wasmoved axially
(total depth, 180 μm) with a piezo (P-725KHDS, Physik Instrumente).
Power was depth-adjusted by the acquisition software with an expo-
nential length constant of ~250 μm.

Imaging data were processed on the NYU High Performance
Computing cluster using a semi-automated software pipeline that
included image registration, segmentation, neuropil subtraction, ΔF/F
computation, and calciumevent detection6. After thefirst imagingday,
motion-correctedmean imageswerecollected for eachplane andused
as references during imaging on subsequent days. Alignment across
days was performed as previously described11.

Opsin expression was measured using mScarlet fluorescence. We
defined opsin-expressing, opsin non-expressing, and ambiguous neu-
rons using imaging data collected in the penultimate session for each
animal. The green fluorescence signal was linearly demixed from the
red fluorescence signal. Using the demixed pixel values, we calculated
a ‘redness score’ as the mean pixel intensity across all pixels used for
that neuron. We also computed the fraction of pixels with redness
exceeding a noise threshold for each neuron following de-mixing. For
each mouse, we manually selected a combined mean pixel value and
pixel fraction threshold above which neurons were considered opsin-
expressing. Neurons with a mean redness and fraction of red pixels
below a second, lower set of thresholds were considered opsin non-
expressing. Neurons with an intermediate redness score and fraction
of red pixels were considered ambiguous and were excluded from
analysis.

Cortical lesions and histology
Cortical lesions were performed with either an 800 nm (Chameleon
Ultra 2, Coherent) or 1040 nm (FidelityHP, Coherent) laser by focusing
the laser at 200-300μmdepth for 12-40 s at 100%power (1.6W; Fig. 1h)
at the infection site. Between 2 and 8 sites spaced 200-400 μm apart
were targeted within the opsin-expressing area81. Lesion success was
visually confirmed by an increase in GCaMP6s fluorescence in the
targeted area. In 2 animals, a second round of lesions was conducted
the subsequent day because opsin-expression and evoked activity was
still evident. Animals were awake but not performing the task during
lesioning and were monitored for signs of distress or discomfort.
Imaging data was not collected following lesioning. Animals were
perfused after completion of training. Brains were sectioned using a
microtome (Leica), mounted on glass slides, and imaged on a fluor-
escent light microscope (VS120, Olympus). Histology revealed that

typical lesions removed most, but not all, opsin-expressing neurons
(Supplementary Fig. 6).

Quantifying responsiveness
For analyses of responsiveness (Figs. 2–4), neurons were classified as
responsive or non-responsive in every trial by comparing the post-
stimulation ΔF/F to the baseline ΔF/F. Baseline ΔF/F was selected to be
the ΔF/F for the ~5.5 s (39 frames) preceding shutter closure on each
trial. The evoked ΔF/F was calculated as the mean ΔF/F of the two
frames immediately following shutter reopening. Neurons were con-
sidered photoresponsive on a given trial if the evoked ΔF/F exceeded
the 97.5th percentile or fell below the 2.5th percentile of the distribution
of baseline ΔF/F values across all trials in a session. To compare
responses between neurons and across sessions, we z-scored the post-
stimulation ΔF/F, using the mean and standard deviation of the base-
line ΔF/F over all trials for a neuron in a given session. We identified
neurons highly responsive to photostimulation by computing the
mean z-scored ΔF/F over 9-pulse trials for all neurons in a given ses-
sion, yielding one value per neuron per session. Neurons were labelled
highly responsive if they exceeded either the 95th or 99th percentiles of
this distribution on at least one session of the sessions being con-
sidered. Spontaneous activity was measured using data excluding the
period 1 s before to 5 s after any photostimulation. The calcium event
rate was obtained using a template matching algorithm6. In cases
where evoked response levels are reported, only the two frames
immediately after shutter opening are used, so that reported evoked
activity precedes any licking.

Within- and cross-day representational stability analyses
To quantify within-day representational stability (Fig. 5), we first
measured the evoked ΔF/F across all neurons for 9-pulse trials. For
each 9-pulse trial, we constructed a population response vector con-
sisting of the evoked ΔF/F for each neuron. The Pearson correlation
between all pairs of population response vectors was then computed,
yielding an inter-trial correlation matrix. Analysis was performed
separately for opsin-expressing and opsin non-expressing popula-
tions. To compare mice that learned with those that did not, we first
computed the mean of this matrix, using the upper triangular portion
of the matrix excluding the diagonal. The comparison was made using
themeanof this value across the training days thatwere common to all
mice in the dataset (days 1-8).

To assess cross-day representational stability (Fig. 6), we first
computed the mean evoked ΔF/F across all neurons on 9-pulse trials.
This resulted in a single population response vector consisting of the
mean evoked ΔF/F for each neuron for that session. The Pearson cor-
relation between all pairs of population response vectors was then
computed, yielding a cross-day correlation matrix. To compare mice
that learned with those that did not, we used this matrix to calculate
the number of days from each day until R2 fell below 0.5 (i.e., the day
beyond which a given day’s population response vector could no
longer account for at least half of the variance for subsequent days’
population response vector). We only examined the days for which all
mice had a valid value for this number (days 1-3).

Stimulus decoding analysis
Stimulus decoding was assessed using receiver operating character-
istic (ROC) analysis. For each day, we partitioned the trials into high (7,
9 pulse) and low (0, 1 and 3 pulse) stimulus intensity trials, excluding 5
pulse trials on days where they were present. For each trial, we
obtained the evoked ΔF/F. ROC analysis was performed by sliding a
criterion threshold through the range of evokedΔF/F values across the
two trial types, thereby classifying responses as false alarms (ΔF/F >
threshold on low pulse count trial) or hits (ΔF/F > threshold on high
pulse count trial). We report the area under the curve (AUC) resulting
from this analysis82. Two metrics were employed to assess decoding

Article https://doi.org/10.1038/s41467-023-39542-x

Nature Communications |         (2023) 14:3860 11

http://openwiki.janelia.org/wiki/display/shareddesigns/MIMMS
http://openwiki.janelia.org/wiki/display/shareddesigns/MIMMS


efficacy: first, we computed the mean AUC across the top 5% of AUC
values for a given day; second, we examined the number of neurons
having an AUC exceeding 0.75 on any given day. In all cases, statistical
comparisons were made by taking the average of one of the afore-
mentioned metrics across three days. For comparing early to late
decoding among mice that learned the task, we compared days 1-3 to
the last three days common to all (n = 6)mice that learned: days 20-22.
For comparisons between learners and non-learners, we used days 1-3
and the last three common days, days 6-8.

Statistics and reproducibility
For comparisons between samples, two-sided paired and unpaired t-
testswere used. For correlation tests, Pearson’s correlationwasused to
identify a linear correlation coefficient (R) and test for significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are available at http://peronlab.org/
data/2023_pancholi_microstim_learning.zip.

Code availability
Source code used in this paper is available at http://github.com/
peronlab/2023_pancholi_natcomms.
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