
Comprehensive imaging of cortical networks
Simon Peron, Tsai-Wen Chen and Karel Svoboda

Available online at www.sciencedirect.com

ScienceDirect
Neural computations are implemented by activity in spatially

distributed neural circuits. Cellular imaging fills a unique niche

in linking activity of specific types of neurons to behavior, over

spatial scales spanning single neurons to entire brain regions,

and temporal scales from milliseconds to months. Imaging may

soon make it possible to track activity of all neurons in a brain

region, such as a cortical column. We review recent

methodological advances that facilitate optical imaging of

neuronal populations in vivo, with an emphasis on calcium

imaging using protein indicators in mice. We point out areas

that are particularly ripe for future developments.
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Introduction
A fundamental question in neuroscience is how informa-

tion relevant to behavior is processed in neural circuits.

Even the simplest perceptual behaviors engage thou-

sands of neurons across multiple regions of cortex [1,2].

In contrast, typical electrophysiological studies sample

only a handful of neurons in a single brain area [3].

Moreover, the type of neuron recorded and its position

within the neural circuit are typically unknown [4] and

long-term recording from the same neurons is inefficient

[5]. As a result, the dynamics of neural circuits during

behavior and learning are poorly understood.

Over the last decade, cellular calcium imaging has be-

come widely used to image activity in neuronal popula-

tions [6]. In most neurons, action potentials (APs) are

tightly coupled to large (20-fold) and rapid (rise time,

1 millisecond) increases in intracellular free calcium con-

centration, which can be used to read out neural activity

[7–9]. Calcium imaging samples activity of all neurons in

an imaging volume [10] and can readily be combined with

visualization of cell type markers to analyze activity in
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specific nodes of neural circuits [11–15]. With genetically

encoded calcium indicators, activity in the same neuronal

populations has been imaged across days and weeks

[16,17�,18,19��].

Calcium imaging is now routinely used to measure the

spatial organization of receptive fields [10,20,21] and to

provide a relatively unbiased view of behavior-related

activity in populations of neurons [13,22]. Calcium imag-

ing efficiently samples activity in relatively rare cell types

[11] and measures changes in neural coding during learn-

ing [17�,18,19��,23,24].

The majority of studies still image only dozens to hun-

dreds of neurons at a time. Here we review the challenges

faced by attempts to produce comprehensive activity

maps based on large-scale imaging. Our focus is on studies

with single cell resolution based on two-photon laser

scanning microscopy (TPLSM) in behaving head-fixed

mice.

Fluorescent probes for neuronal function
The rapid development of protein sensors for neuronal

function has been a major driver of new applications for

imaging in vivo. In the past, experimenters had to choose

between sensitive small-molecule sensors, which need to

be loaded into brain tissue using invasive chemical

methods [25], and less sensitive protein sensors, which

can be delivered using the versatile tools of molecular

genetics [26]. Recent efforts in protein engineering

[16,27��,28�,29,30��] have boosted the sensitivity of

GECIs, allowing them to largely supplant synthetic indi-

cators for imaging neuronal populations. Under favorable

conditions, new GECIs detect single action potentials

(APs) in the intact brain [27��] (Figure 1a).

Despite these advances, compared to electrophysiology

calcium imaging still has several drawbacks. Existing

GECIs are not sufficiently sensitive to detect low levels

of activity in some cell types, such as parvalbumin-posi-

tive interneurons [27��]. The performance degrades as

the per-neuron sampling time declines (Figure 1b,c).

Furthermore, calcium sensors are slow compared to the

precision in neural spike trains [27��,29], limiting the

insights that can be drawn about spike timing in neural

coding [31,32] and connectivity in neural circuits [33].

Imaging is confined to optically accessible structures,

typically less than one millimeter from the surface of

the brain or an optical implant (e.g. endoscope). In

contrast, electrophysiology has excellent signal-to-noise

ratio, dynamic range, time resolution, and spatial reach.
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Action potential detectability in imaging experiments. (a) GCaMP6s signal (blue, top) and extracellular spikes (black, bottom; single spikes

correspond to asterisks) recorded from a single neuron (data from Ref. [27��]). The size of the field of view (FOV, 30 mm square) corresponded to

approximately three cortical neurons, imaged at 30 Hz. (b) Simulations of different imaging conditions based on the data from panel A assuming

identical laser power. Green, approximately 300 neurons imaged at 30 Hz. The signal-to-noise ratio is smaller compared to (a) because the signal

is distributed across a larger number of neurons. Magenta, approximately 1800 neurons imaged at 5 Hz. (c) Single action potential detection

probability as a function of false positive rate for isolate single spike events (ROC curve; colors corresponding to a, b). The ability to detect single

action potentials deteriorates as the number of simultaneously imaged neurons increases. In experiments in behaving animals many other factors

further degrade detectability, including movement noise, increased fluorescence baseline at higher spike rates, and uncertainty about spike timing.
For these reasons calcium imaging currently occupies a

niche complementary to electrophysiology.

Improvements in proteins sensors will continue to drive

advances in population imaging. For example, even more

sensitive GECIs would expand the range of cell types

amenable to calcium imaging and increase the number of

neurons that can be imaged simultaneously. Given that

the brightness of state-of-the art GECIs is already high

[27��], improvements in signal-to-noise ratio will mainly

be driven by increasing the fluorescence change upon

calcium binding [34,35]. The most obvious path to better

detectability is thus to engineer GECIs with zero resting

fluorescence and higher affinity for calcium. Red-shifted

GECIs will enable imaging deeper in tissue [36�].

Protein sensors for state variables other than calcium

could overcome some of the limitations of calcium imaging

for measuring population activity. In particular, protein

voltage sensors can be much faster than calcium sensors

[37]. But despite recent improvements, their sensitivity

for detecting activity at the level of single neurons is still

substantially inferior to protein calcium sensors [38–41].

The best-of-class calcium indicators change fluorescence

up to 50-fold during physiological changes in intracellular

calcium, whereas voltage sensors change less than 2-fold

for typical voltage changes. Fundamental biological con-

straints provide additional challenges for voltage imag-

ing. Calcium can be sensed by molecules distributed
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throughout the neuronal cytoplasm. Typical expression

levels (50 mM) [17�,42] correspond to approximately 107

fluorescent molecules in the soma, sufficient to produce

a bright signal. In contrast, voltage needs to be sensed

across the lipid bilayer, and many fewer fluorescent

proteins can be incorporated into the two-dimensional

membrane (a typical density for membrane proteins,

10 mm�2, corresponds to 104 molecules in the somatic

membrane). Intracellular fluorescence contributed by

sensors in the endoplasmic reticulum produces non-pro-

ductive background. Orders of magnitude improvements

will be required to make voltage sensors competitive

with GECIs for imaging of neuronal populations at

cellular resolution.

Gene delivery methods
In the mammalian brain, stable long-term expression of

protein sensors for imaging remains challenging. Adeno-

associated viruses (AAVs) and other viral vectors can

produce the high intracellular GECI concentrations, typ-

ically 10–100 mM [17�,42], required for in vivo imaging

[16,43] (Figure 2a). However, concentrations vary across

neurons, within a cell type, and across cell types [19��].
Expression levels continue to rise over months until they

cause aberrant cell health [16,27��], limiting the window

for GECI imaging to a few weeks, depending on the

promoter construct, viral titer, injection volume, type of

GECI and other factors. Viral gene transfer also requires

challenging surgeries. Best-practice procedures demand
www.sciencedirect.com
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Figure 2
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Methods for transgene expression for in vivo imaging. (a) In vivo TPLSM image from a mouse infected with AAV2/1-syn-GCaMP6s in the

somatosensory cortex. (b) In vivo TPLSM images of transgenic expression of GCaMP6f in a thy-1 transgenic mouse (GP5.17, JAX 025393). Left,

L2/3; right, L5. (c) Transgenic nuclear expression of mCherry. The Cre reporter mouse (R26-LSL-H2B-mCherry; [19], JAX 023139) was crossed to

a synapsin-Cre transgenic mouse. Left, coronal section, showing dense expression of mCherry-H2B in the neocortex. Right, blow-up of the

somatosensory cortex. (d) Expression of nuclear localized mCherry in GABAergic neurons in Gad2 knock-in mice (Gad2-t2A-NLS-mCherry; [19],

JAX 023140). (e) In vivo TPLSM image in an LSL-CAG-H2B-mcherry X emx1-Cre mouse, with AAV2/1-syn-GCaMP6s infection (green). The

mCherry expression is restricted to excitatory neurons in cortex, whereas GCaMP6s expression is pan-neuronal. The green GCaMP6 fluorescence

in many neurons is low and indistinct with respect to the fluorescent neuropil. The high-contrast images of the red nuclei aid in movement

correction, image segmentation, and cell-type specific analysis (white arrow points to a GABAergic interneuron).
tiny injection volumes (5–50 nl) [17�,19��], which can

result in variable numbers of infected cells and inhomo-

geneous expression levels.

In transgenic mice, GECIs can be expressed at constant

levels over many months, without any signs of cytotoxici-

ty [42,44�,45,46] (Figure 2b). Expression is reproducible

across neurons and individual mice, without invasive
www.sciencedirect.com 
surgeries. However, established schemes for flexible

reporter expression (e.g. GCaMP3 driven by the CAG

promoter targeted to the Rosa26 gene locus) [47] fail to

provide adequate expression levels for cellular in vivo
imaging [42]. Expression under the Thy1 promoter [44�] is

sufficiently high in some mouse lines. But the labeling

patterns depend on transgene cassette integration site

and differ in an unpredictable manner across lines.
Current Opinion in Neurobiology 2015, 32:115–123
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Selected individual mouse lines typically serve specific

narrow purposes. In addition, expression is limited to

excitatory neurons.

A promising new strategy is based on a docking site in the

transcriptionally permissive TIGRE locus, in combina-

tion with tTA-based transcriptional amplification. In this

scheme, transgene expression is driven from the tetracy-

cline response element in a cre-dependent manner. Ex-

pression of GECIs and other probes can be substantially

higher compared to Rosa26-CAG based reporters, suffi-

cient for in vivo imaging [48��].

Because the fluorescence change upon calcium binding is

a key factor in determining the sensitivity of molecular

calcium sensors [34,35], the most sensitive GECIs have

low resting fluorescence [27��]. This can make neurons

difficult to visualize and segment in the absence of

activity (Figure 2a,b). Co-expression of a fluorescent

protein with non-overlapping fluorescence emission can

address this problem [19��]. Transgenic mice with

mCherry [49] targeted to the nuclei of specific cell types

can be combined with GECI expression for in vivo
imaging (Figure 2c–e) [19��]. The red nuclear protein

aids segmentation of neurons, movement correction, im-

age alignment across days, and cell-type specific analysis,

greatly facilitating in vivo imaging.

Microscopy methods
The vast majority of cellular in vivo imaging studies have

been performed using 2-photon laser scanning microsco-

py [50]. 2-Photon excitation provides localization of exci-

tation in scattering tissue, which in turn produces three-

dimensional contrast and resolution. As a result of locali-

zation of excitation, scattered and non-scattered photons

both contribute to signal. This greatly boosts the image

contrast and signal-to-noise ratio compared to wide-field

microscopy, particularly when imaging in scattering me-

dia [51].

The principles of 2-photon excitation microscopy de-

mand that individual excitation volumes (on the order

of 1 mm3) are sampled sequentially. The sampling rate is

ultimately limited by the fluorescence lifetime of typical

fluorophores (3 ns for GFP) [52], which is comparable to

the inter-pulse interval for commonly used pulsed light

sources (10 ns) [53]. It is therefore in principle possible to

sample a cortical column (300 mm � 300 mm � 1000 mm)

with its 104 neurons at 10 Hz (100 imaging planes, sepa-

rated by 10 mm, 10 ns/voxel). Two factors currently con-

spire to make this target unachievable by a factor of ten

or more. First, scanning methods (e.g. resonant scanners)

are too slow and inefficient. Second, under acceptable

illumination conditions and expression levels, best-of-

class GECIs are not sufficiently sensitive. Improvements

in laser scanning technology (e.g. [54,55]) and GECI
Current Opinion in Neurobiology 2015, 32:115–123 
performance should make imaging of entire cortical col-

umns with single cell resolution achievable.

Penetration depth of TPLSM is limited by scattering and

absorption. TPLSM imaging up to 1 mm deep has been

demonstrated [51]. Deeper brain regions can be accessed

by removing intervening brain tissue [22,56] or by inser-

tion of endoscopes [57,58] or prisms [59] into the brain

regions of interest.

A variety of wave front shaping methods have been

proposed to overcome sample-induced aberrations, such

as spherical aberrations and astigmatism [60,61,62�].
These methods can dramatically improve signal levels

for small structures that are on the order of or smaller than

the two-photon excitation volume, such as spines and

axons, but have more modest effects on images of larger

structures [62�]. Wave front engineering can also correct

for strong local scattering with large improvements in

signal level at depth [63�]; however, these corrections

have to be recomputed for every few micrometers of

sample, making this method too slow for most applica-

tions.

A promising direction for deep imaging is based on longer

wavelength fluorophores. Red and near-IR fluorescence

emission is absorbed less by blood [64], yielding improved

signal collection when imaging in vivo. Furthermore, lon-

ger excitation wavelengths are scattered less on the way

into the tissue [65]. The penetration depth is therefore

significantly better for red and near-IR fluorophores [36�].
Red GECIs with properties comparable to the best green

GECIs are on the horizon [66��,67��] and poised to boost

the penetration depth of TPLSM imaging significantly.

Three-photon fluorescence excitation has been demon-

strated for deep imaging [68]. However, three-photon

cross-sections are tiny. As a result very high peak intensi-

ties and long pixel dwell times are required for practical

image formation. Three-photon excitation microscopy is

thus currently too slow for physiological imaging. The

high peak intensities required to drive three-photon

excitation may also cause rapid photobleaching of the

fluorophores and other types of destructive photochem-

istry [69].

Serial sampling limits the speed of TPLSM. Spurred by

new fast and sensitive solid state cameras, wide-field

microscopy [70�], light-field microscopy [71], and light-

sheet microscopy [72] have been used to measure neural

activity in rodents. Compared to TPLSM, scattering and

out-of-focus fluorescence rapidly degrade signal and con-

trast with imaging depth. However, many orders of mag-

nitude more fluorescence is collected simultaneously, and

computational methods can potentially overcome some of

the signal degradation. In advantageous situations, such

as brain areas with sparse activity patterns in space and
www.sciencedirect.com
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time, quasi two-dimensional structures, and sparse label-

ing, it may be possible to extract signals corresponding to

activity of individual neurons [70�]. In optically clear

preparations such as the zebrafish, these approaches have

allowed sampling of activity across the entire brain

[71,73]. An important goal is to establish the correspon-

dence between fluorescence dynamics extracted from

these data and neural activity in individual neurons, as

has been done for TPLSM [25,27��,28�,74,75].

From images to spikes
Imaging experiments produce stacks of images. Extract-

ing quantitative and robust estimates of spike trains or

time-varying spike rate is a complex computational prob-

lem.

The biophysics of calcium imaging implies that no data

analysis trick will provide error-free spike trains. Further-

more, the performance of any algorithm depends on many

factors relating to imaging conditions (Figure 1b,c). Even

the spike rate of individual neurons matters. For neurons

firing at very low rates, false-positive spikes may build to

become a substantial fraction of the total detected events.

At high firing rates, the elevated baseline fluorescence

decreases detection due to larger shot noise and reduced

sensitivity if the indicator approaches saturation. We still

need a better understanding of the factors underlying

sensitivity and dynamic range of calcium imaging.

Extracting quantitative estimates of spike trains or time-

varying spike rate from raw images involves multiple

complex steps. Low-level analysis starts with movement

correction (Figure 3a). Lateral motion usually dominates

[76] and algorithms for correcting lateral motion are
Figure 3
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relatively mature [76,77�,78]. Axial motion correction is

computationally expensive and necessitates sampling

multiple planes [12]. Methods for closed-loop motion

correction may ultimately become necessary.

Segmentation involves separating the signal correspond-

ing to individual neurons from the signal of other neurons

and the neuropil [12,27��,75,79�,80] (Figure 3b,c). The

neuropil signal arises from fluorophore expressed in un-

resolved small dendrites and axons [75], as well as out-of-

focus fluorescence. Regions of interest (ROIs) can be

drawn using either morphological [19��,27��,78], or activ-

ity-based [79�,80] algorithms. Whereas morphological

approaches are computationally light and potentially un-

biased with respect to activity (e.g., when based on

structural red nuclear markers [19��]), activity-based

approaches can in principle yield more accurate ROI

boundaries. A hybrid approach, where morphology-seed-

ed ROIs are refined using activity-based approaches, may

be optimal.

Following ROI selection, neuropil contamination must be

corrected for. This problem is especially acute when

GECIs are confined to the cytoplasm (a relatively thin

shell around the nucleus). Because of the limited resolution

of 2-photon microscopy in vivo, especially axially [81], the

neuropil signal substantially bleeds into the somatic signal

[27��,81], so that Fmeasured = aFneuropil + bFsoma. The con-

tamination a depends on the point spread function (PSF)

and neuronal geometry. Assuming an idealized PSF

(Gaussian with SDx,y = 0.3 mm and SDz = 3 mm) and neu-

ron geometry (2 mm thick shell surrounding an 8 mm

diameter nucleus) implies a = 0.3–0.5. Empirically we

determined a = 0.7–1 to be most effective for removing
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neuropil associated fluorescence contamination (Figure 3c;

[19��,27��]). This large value for a suggests that out-of-

focus fluorescence is more pronounced than expected from

PSF measurements [81]. Since the neuropil signal is not

spatially uniform (e.g., in mouse somatosensory cortex,

neuropil pixel correlation l is approximately 150 mm) a

local neuropil estimate must be employed (Figure 3c)

[19��]. The importance of neuropil correction is readily

apparent in experiments combining imaging with electro-

physiology ([27��]; Figure 3c).

Fluorescence change in ROIs is often reported as neural

‘activity’. However, fluorescence is a non-linear func-

tion of intracellular free calcium [28�], which in turn

is a non-linear function of the recent activity of the

neuron [82]. This implies that calcium imaging-based

‘tuning’ curves of individual neurons are distorted [83]

(Figure 4a,b).

The complex relationship between fluorescence dynam-

ics and activity (Figure 4c) makes explicit spike inference

desirable (Figure 3d). Most researchers use deconvolu-

tion or template matching (e.g. [14,23,84,85,86�,87]).

These algorithms do not explicitly account for the non-

linear coupling between spikes and fluorescence changes.

Because neurons exhibit diverse spike-to-fluorescence

transfer functions, one set of parameters will only be

effective for a subset of cells. Future spike inference

algorithms will have to employ nonlinear transfer func-

tions and need to use neuron-specific parameters derived

from fluorescence dynamics alone.

Compared to the rapid advances in experimental meth-

ods, computational analysis of imaging data remains in its
Figure 4

ΔF/F

ΔSpike rate 

Spike rate
ΔF/F cell1
ΔF/F cell2

(a) (b)

Cell1

Cell2

Illustration of potential biases introduced by calcium imaging. (a) Response

in spike rate but having distinct spike-fluorescence transfer functions. At ba

of higher baseline activity or resting calcium concentration. Identical change

in Cell 1 (red) and Cell 2 (green). (b) The true tuning curve of both cells (spik

curves (Cell 1, red; Cell 2, green). (c) Simulated Poisson spikes (left) and flu

a temporally distorted mean response across trials, which deconvolution or

Current Opinion in Neurobiology 2015, 32:115–123 
infancy. Currently used methods are ad hoc, slow, poorly

documented, and differ across labs, implying that hard-

won experimental data are underutilized. A lack of stan-

dardization hinders reproducibility and comparison across

studies. Moreover, with increasing imaging speeds, data

sets have ballooned. A resonant scanning TPLSM pro-

duces approximately 100 GB of data per experiment-

hour. Nearly complete automation and modern compu-

tational methods, such as distributed computing [88�] will

have to supplant the semi-manual methods in use today to

fully exploit the richness of these datasets.

A principled approach for analysis of imaging data must

start with quantitative comparisons of analysis algo-

rithms. This could be achieved in challenges, where

computational approaches are evaluated against datasets

with ground truth, which are now publicly available

(simultaneously detected spikes using electrophysiology

[27��]: http://dx.doi.org/10.6080/K02R3PMN; segmenta-

tion based on structural fluorescence markers [19��], e.g.

Figure 2c–e: http://dx.doi.org/10.6080/K0TB14TN).

Benchmarking should be performed in an open-source

environment that supports cluster and distributed com-

puting [89]. Benchmarking would stimulate the devel-

opment of new algorithms and wide adoption of best-of-

class methods.

Once spike trains or spike rates have been extracted, they

can be mined for insight into the neural mechanisms

underlying behavior. The general goal is to relate the

activity patterns of neuronal populations to animal be-

havior. The technical challenges of high-dimensional

data analysis are shared with other types of neurophysi-

ology data [90] and are beyond the scope of this review.
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 curves for two hypothetical neurons experiencing an identical change

seline Cell 2 is closer to saturation than Cell 1. This could be because

s in spike rate (blue) would translate into different fluorescence change

e rate, blue) produces distinct and distorted fluorescence tuning

orescence transients based on data in [27��]. Simply using DF/F yields

 spike estimation can ameliorate.
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Outlook: towards mesoscale imaging of
neural networks
We are on the verge of a new kind of neurophysiology,

bridging the gap between single neurons and brain areas.

We recently demonstrated comprehensive measurement

of behavior-related activity in the superficial layers of

several cortical columns, producing a neural activity map

comprising more than 10,000 neurons per animal [19��].
Microscopy schemes are in place to image multiple brain

regions simultaneously [91�,92]. It will soon be possible to

track activity of all neurons in a brain region and measure

the interactions between populations in multiple brain

areas.

We expect further improvements in proteins sensors to

continue to drive advances in population imaging. More

sensitive GECIs will facilitate imaging larger number of

neurons simultaneously. Faster kinetics will allow esti-

mates of spike trains over a larger range of spike rates.

Red-shifted indicators will expand the range of imaging

depths. Automation and standardization of image analy-

sis pipelines will be critical to deal with the resulting big

data deluge and to convert image data to neuronal state

variables.
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122 Large-scale recording technology
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GCaMP6, including activity of neural populations and single synapses.
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